1. Introduction

The American College of Obstetricians and Gynecologists (ACOG) and the Society for Maternal-Fetal Medicine (SMFM) outlined prenatal diagnostic testing guidelines for patients, and recommended microarray as a first-line test when fetal structural anomalies are identified. Historically, patients interested in more genetic information but reticent to undergo diagnostic testing were only able to choose from traditional cell-free DNA (cfDNA) testing, biochemical screening, or ultrasound evaluation during pregnancy. Genome-wide cfDNA prenatal screening has been clinically available since 2015, providing an option for patients who decline diagnostic testing. Genome-wide cfDNA offers additional information about fetal chromosomal abnormalities beyond common aneuploidies, sex chromosome aneuploidies, and select microdeletions. Previous studies have shown that 20% of single specimens were not associated with a prenatal karyotype, precluding the need for microarray analysis. Future studies may be needed to better understand these cases.

2. Methods

Maternal blood samples were submitted to Sequenom Laboratories for genome-wide cfDNA screening. All samples were subjected to DNA extraction, library preparation, and genome-wide massively parallel sequencing (mPlex) automated assays, as requested by ordering physicians. As part of routine follow-up of cases, or matched to corresponding diagnostic testing samples, from the institution's diagnostic testing laboratory. Out of a cohort of approximately 5,000 genome-wide cfDNA samples submitted, approximately 1,655 had diagnostic specimen and/or testing information that was reported or matched. Those specimens or diagnostic tests that were ordered more frequently than microarray (10.8%) included: fluorescence in situ hybridization (FISH), karyotype, chorionic villi, or placental discordancy (GID) studies, and unspecified/other.

3. Results

A lot of genome-wide cfDNA samples associated with diagnostic testing and specimen information was compiled. Diagnostic specimen types included: chorionic villi, amniotic fluid, postnatal peripheral or cord blood, placenta, products of conception (POC), maternal/parental peripheral blood, and unspecified/other. Tests ordered included: fluorescence in situ hybridization (FISH), karyotype, chorionic villi, or placental discordancy (GID) studies, and unspecified/other.

The majority of cfDNA cases had diagnostic testing on a single specimen type (89.7%) and one test type (87.5%) (Figure 1, Figure 2). On cfDNA samples with only one test type, karyotype (93.3%) was ordered more frequently than microarray (10.8%) (Figure 2). Amniotic fluid (60.7%) was the most common single specimen type sampled (Figure 1). 21.3% of cfDNA cases had diagnostic testing on a single postnatal, POC, or placental specimen only. (Figure 3). Maternal/parental (64.3%) and placental (60.5%) studies often coincided with testing on an additional specimen type, while chorionic villi (89.2%), amniotic fluid (85.9%), POC (80.7%), and postnatal studies (84.4%) were often the only specimen type sampled. (Figure 4a-4g).

4. Conclusions

The data show the majority of providers are ordering testing on a single specimen and test type following genome-wide cfDNA screening. Additional testing at other laboratories or institutions could have been performed but not captured during data collection. Providers ordering only one test type were greater than 5 times more likely to order karyotype over microarray, despite the joint ACOG and SMFM guidelines discussing microarray's higher resolution and diagnostic yield. Positive, negative, and non-reportable genome-wide cfDNA results were included in the data compilation associated diagnostic and specimen type. The increased number of karyotypes ordered may be related to an increased number of genome-wide cfDNA results positive for common aneuploidies, precluding the need for microarray analysis. Future studies can analyze whether the type of genome-wide cfDNA result correlates to the type of diagnostic testing ordered.

Greater than 20% of single specimens were not associated with a prenatal specimen. This observation suggests that some patients may have chosen to defer testing until the postnatal period, or after a pregnancy loss, instead of pursuing diagnostic testing during pregnancy. Genome-wide cfDNA could be a viable option for these patients.

Key Points:
- Due to 20% of women who opted for genome-wide cfDNA did not proceed with diagnostic testing during pregnancy.
- Providers were 5 times more likely to order karyotype over microarray, despite the lower diagnostic yield and resolution with karyotype.
- Maternal/parental and placental studies were likely to coincide with additional specimen types.

References


Kimberly Fanelli, MS, CGC, Erica Soster, MS, CGC, Jill Rafalfo, MS, CGC, Labcorp Genetics and Women’s Health, Laboratory Corporation of America®, Westborough, MA