SUMMARY: NEGATIVE RESULTS: NOT AT INCREASED REPRODUCTIVE RISK

<table>
<thead>
<tr>
<th>DISORDER (GENE)</th>
<th>RESULTS - SAMPLE REPORT, F-630217</th>
<th>RESULTS - SAMPLE REPORT, M-630217</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystic fibrosis (CFTR)</td>
<td>NEGATIVE</td>
<td>NEGATIVE</td>
<td>This result reduces, but does not eliminate, the risk for an affected pregnancy.</td>
</tr>
<tr>
<td>NMID: NM_000492</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal muscular atrophy (SMN1)</td>
<td>NEGATIVE</td>
<td>NEGATIVE</td>
<td>This result reduces, but does not eliminate, the risk for an affected pregnancy.</td>
</tr>
<tr>
<td>NMID: NM_000344</td>
<td>3 (or more) copies of SMN1</td>
<td>3 (or more) copies of SMN1</td>
<td></td>
</tr>
<tr>
<td>Fragile X syndrome (FMR1)</td>
<td>NEGATIVE: 29 and 36 repeats</td>
<td>Males are not tested for X-linked disorders.</td>
<td>This result reduces, but does not eliminate, the risk for an affected pregnancy.</td>
</tr>
<tr>
<td>NMID: NM_002024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALL OTHER DISORDERS</td>
<td>NEGATIVE</td>
<td>NEGATIVE</td>
<td>This result reduces, but does not eliminate, the risk for an affected pregnancy.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For a complete list of residual risks for all genes on this panel, visit www.integratedgenetics.com.</td>
</tr>
</tbody>
</table>

Genetic counseling is recommended to discuss the potential clinical and/or reproductive implications of positive results, as well as recommendations for testing family members and, when applicable, this individual’s partner. Genetic counseling services are available. To access Integrated Genetics Genetic Counselors please visit www.integratedgenetics.com/genetic-counseling or call (855) GC-CALLS (855-422-2557).

ADDITIONAL CLINICAL INFORMATION

This couple is not at an increased risk for having a pregnancy that is affected with one of the disorders covered by this test. For a complete list of residual risks for all genes on this panel, visit www.integratedgenetics.com.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Testing Performed at Medical Neurogenetics, LLC, 5424 Glenridge Drive. Atlanta, GA 30342. Peter L. Nagy MD PhD, Laboratory Director 1-800-255-7357
COMMENTS

This interpretation is based on the clinical information provided and the current understanding of the molecular genetics of the disorder(s) tested. References and additional information about the disorders tested are available at www.integratedgenetics.com.

The standard of care for Tay-Sachs disease carrier detection in all ethnic groups is enzyme (hexosaminidase A) analysis. For maximum sensitivity and specificity, enzyme analysis should be performed in addition to DNA variant analysis (Schneider, PMID:19876898). If Tay-Sachs enzyme analysis was ordered, results are reported separately.

The standard of care for determining carrier status for sickle cell disease and other hemoglobinopathies is to combine information from clinical assessment, complete blood count, hemoglobin electrophoresis, and DNA testing (Traeger-Synodinos, PMID:25052315). If hemoglobin electrophoresis was ordered, results are reported separately.

METHODS/LIMITATIONS

Single Nucleotide Polymorphism and Small Indel Sequencing Assessment: Genomic regions of interest are selected using a custom capture reagent for target enrichment (Twist Bioscience) and sequenced via the Illumina® next generation sequencing platform. Sequencing reads are aligned with the human genome reference GRCh37/hg19 build. Regions of interest include all exons and intron/exon junctions (+/- 20 nucleotides) for each gene analyzed. A minimum of 99% of bases are covered at >15X. Analytical sensitivity is estimated to be >99% for single nucleotide variants, >97% for insertions/deletions less than six base pairs, and >95% for insertions/deletions between six and fifteen base pairs. Uncovered regions with known pathogenic variants are sequenced in a targeted manner (List based on ClinVar Database: July 2019 release). All reported variants are confirmed by a second method.

Copy Number Variant Assessment: Next Generation Sequencing is performed and the data are assessed with Illumina's DRAGEN (Dynamic Read Analysis for GENomics) Bio-IT Platform. Genes listed in ClinVar with pathogenic deletions less than 10 exons in size are padded with additional intronic probes to allow single exon resolution CNV detection (List based on ClinVar Deletion Database: January 2019 release; see list below). For other genes, large deletions (>10 exons) can be detected. The c.1263_1317del55 variant in GBA is assessed by targeted PCR and gel electrophoresis. The resolution of this analysis can vary depending on region-specific features. Reported variants are confirmed by a second method. Analytical sensitivity is estimated to be >95%. Padded genes: ABCA12, ABCD1, ACADM, ACOX1, ADAMTS2, ADGRV1, AGL, AGPAT2, AGXT, AHI1, AIRE, ALDOB, ALMS1, AP3B1, ARL6, ARSA, ARSB, ATM, ATP7A, ATRX, BBS1, BBS2, BBS4, BBS5, BBS7, BCKDHB, BLM, BRIPI, CAPN3, CBS, CDH23, CFTR, CLCN5, CLN3, CLN5, CLN6, CNTNAP2, COL4A5, CP, CPT1A, CTNS, CYBB, DBT, DCLRE1C, DMD, DMDM, DOPC, DPK, DYSF, EIF2BP1, ELF1, EMD, ERCC4, ETB, ETS, FAD2, FAM126A, FANCA, FANCC, FANCD2, FANCI, FKB, FKTN, GAA, GALC, GALNS, GALT, GBE1, GLDC, GNE, GNPTAB, GUSB, HBB, HEXA, HINT1, HIV, HPD, HSD17B4, ID5, IFIT4, IL7R, ITPA, KCTD7, LICAM, LAMA2, LAMP2, MCLCN1, MEGF8, MKS1, ML1C, MMAB, MTM1, NBN, NF2, NDUFA2, NDUFS1, NBP, NFIP1, NRG1, NTRK1, OAT, OCLN, OTC, PAH, PANK2, PCCA, PCDH15, PDHX, PEX1, PEX6, PHKA1, PHKA2, PHKB, PKHD1, PLA2G6, PMM2, POLH, POMGNT1, RAPSN, ROH2, RGGI1, RPSK4A3, SQCD, SQCG, SLCA2A0, SLCA2A4, SLCA2A10, SLCA5A3, SLCA7A, SPCA1, SYASE1, TAZ, TMEM231, TMEM38B, TMEM70, TMEM32, USH2A, VDLR, VPS13B, VRK1, WRN.

Congenital Adrenal Hyperplasia: This analysis will detect most large rearrangements/deletions/duplications within the CYP21A2 gene, as well as the presence of seven of the most common pathogenic variants in the gene: 1) c.518T>A (p.Ile173Asn), Chr6:32007203 (GRCh37); 2) c.713T>A (p.Val238Glu); Chr6:32007587 (GRCh37); 3) c.719T>A (p.Met240Lys); Chr6:32007593 (GRCh37); 4) c.923dup (p.Leu308Phefs); Chr6:32007966 (GRCh37); 5) c.293-13C>A; G; Chr6:32007587 (GRCh37); 6) c.332_339delAGAGACTAC (p.Gly111Valfs); Chr6:32006910-32006917 (GRCh37) 7) c..-113G>A; Chr6:32006087 (GRCh37). Other point mutations and small indels and reciprocal changes between CYP21A2 and CYP21A1P are not detected by this analysis. The analytical sensitivity of this assay is estimated to be >99%.

Alpha thalassemia: Variants included in the analysis of the alpha-globin (HBA) gene cluster are the Constant Spring non-deletion variant and the following deletions: -alpha3.7, -alpha4.2, --alpha20.5, --SEA, --FIL, --THAI, --MED, and the HS-40 regulatory region. This analysis does not detect other variants in the alpha-globin genes or variants in the beta-globin gene and may not detect the co-occurrence of a deletion and a duplication. Analytical sensitivity is estimated to be >99% for the targeted variants.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Testing Performed at Medical Neurogenetics, LLC, 5424 Glenridge Drive. Atlanta, GA 30342. Peter L. Nagy MD PhD, Laboratory Director 1-800-255-7357
Spinal Muscular Atrophy: This analysis will detect the copy number of exon 7 of the SMN1 gene. When no copies of SMN1 exon 7 are detected, SMN2 exon 7 copy number is assessed and reported. This test is unable to differentiate between two copies of the SMN1 gene on one allele (in cis) versus two copies of the gene on different alleles (in trans). When two copies of SMN1 exon 7 are detected, the NGS data are assessed for the presence of the c.*3+80T>G “silent carrier” variant. This analysis does not test for any other variants that may be present in other regions of the SMN1 gene. Therefore, normal results reduce, but do not eliminate the risk of this patient being a carrier of SMA. Post-test carrier risk reductions for individuals with no family history are shown in the table below.

<table>
<thead>
<tr>
<th>Population</th>
<th>Pre-test carrier risk</th>
<th>Post-test risk of being a carrier with 2 copies**</th>
<th>Post-test risk of being a carrier with 3 copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>African American</td>
<td>1 in 72</td>
<td>1 in 34</td>
<td>1 in 420</td>
</tr>
<tr>
<td>Ashkenazi Jewish</td>
<td>1 in 67</td>
<td>High risk</td>
<td>1 in 5400</td>
</tr>
<tr>
<td>Caucasian</td>
<td>1 in 59</td>
<td>High risk</td>
<td>1 in 5400</td>
</tr>
<tr>
<td>Asian</td>
<td>1 in 47</td>
<td>1 in 29</td>
<td>1 in 5600</td>
</tr>
<tr>
<td>Hispanic</td>
<td>1 in 68</td>
<td>1 in 140</td>
<td>1 in 5400</td>
</tr>
<tr>
<td>Mixed or other ethnic backgrounds</td>
<td>For counseling purposes, consider using the ethnic background with the most conservative risk estimates.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** includes carriers who are silent carriers (2+0) and carriers with a pathogenic variant not detected in this assay

Luo et al., PMID 23788250

Fragile X Syndrome: Repeat-primed PCR is used to detect the number of CGG repeats on each allele of the FMR1 gene. The reportable range is 5-200 repeats. Alleles with expansions above 200 repeats are reported as >200. In females, excluding prenatal specimens, alleles between 55 and 90 repeats are assessed by a PCR assay to determine the number and position of AGG interruptions within the CGG repeats (analysis performed at Esoterix Genetic Laboratories, LLC, 3400 Computer Drive Westborough MA 01581, (800)255-7357, Bernice Allitto, PhD., Laboratory Director). Interpretation of repeat expansion results is based on the following ranges: Negative: < 45 repeats; intermediate: 45-54 repeats; premutation: 55-200 repeats; full mutation: >200 repeats. The analytical sensitivity of this assay for the detection of expanded alleles in the FMR1 gene is estimated to be >99%. Repeat numbers are typically ±1 for alleles containing up to 60 repeats, ±3 for alleles containing 61-119 repeats, and ±10 for alleles with >119 repeats. Low levels of mosaicism (<5%) and FMR1 variants unrelated to trinucleotide expansion are not detected by this assay.

Reported Variants and Risk Revisions: Pathogenic and likely pathogenic variants are reported after confirmation by an appropriate technology. Variants in GJB2, GJB6, and OPA3 that act in a dominant fashion are not reported. NEB variants occurring in exons 82-105 may not be reliably detected by this analysis and are not reported. Nondeletion variants are specified using the numbering and nomenclature recommended by the Human Genome Variation Society (HGVS, http://www.hgvs.org/). Variants of uncertain significance, likely benign, and benign variants are not reported. Variant classification is consistent with ACMG standards and guidelines (Richards, PMID:25741868). Detailed variant classification information is available upon request. When provided, carrier rates and detection rates are derived from gnomAD and ClinVar. For unknown or mixed ethnicities, the ethnic background with the most conservative risk estimate is used. For a complete list of residual risks for all genes on this panel, visit www.integratedgenetics.com.

Limitations: Technologies used do not detect germline mosaicism and do not rule out the presence of large chromosomal aberrations, including rearrangements, gene fusions, or variants in regions or genes not included in this test, or possible inter/intragenic interactions between variants. Variant classification and/or interpretation may change over time if more information becomes available. False positive or false negative results may occur for reasons that include: rare genetic variants, sex chromosome abnormalities, pseudogene interference, blood transfusions, bone marrow transplantation, somatic or tissue-specific mosaicism, mislabeled samples, or erroneous representation of family relationships.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Testing Performed at Medical Neurogenetics, LLC, 5424 Glenridge Drive. Atlanta, GA 30342. Peter L. Nagy MD PhD, Laboratory Director 1-800-255-7357

Date Issued: 08/21/2019
DISORDERS TESTED

3-Methylcrotonyl-CoA carboxylase deficiency (2 genes). Autosomal recessive: MCC1, MCC2.

Abetalipoproteinemia (1 gene). Autosomal recessive: MTTP.

Acute infantile liver failure (3 genes). Autosomal recessive: LARS, NBAS, TRMU.

Adenosine deaminase deficiency (1 gene). Autosomal recessive: ADA.

Agammaglobulinemia, X-linked (1 gene). X-Linked: BTK. Males are not tested for X-linked disorders.

Alpha-thalassemia (2 genes). Autosomal recessive: HBA1, HBA2.

Alpha-thalassemia X-linked intellectual disability syndrome (1 gene). X-Linked: ATRX. Males are not tested for X-linked disorders.

Argininosuccinic aciduria (1 gene). Autosomal recessive: ASL.

Aromatic l-amino acid decarboxylase deficiency (1 gene). Autosomal recessive: DDC.

Asparagine synthetase deficiency (1 gene). Autosomal recessive: ASNS.

Aspartylglucosaminuria (1 gene). Autosomal recessive: AGA.

Ataxia with vitamin E deficiency (1 gene). Autosomal recessive: TTPA.

Ataxia-telangiectasia (1 gene). Autosomal recessive: ATM.

ATP7A-related coppertransport disorders, includes Menkes syndrome (1 gene). X-Linked: ATP7A. Males are not tested for X-linked disorders.

Autoimmune polyglandular syndrome type 1 (1 gene). Autosomal recessive: AIRE.

Autoimmune polyglandular syndrome type 2 (1 gene). Autosomal recessive: AIRE.

Autoimmune polyglandular syndrome type 3 (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy candidiasis ectodermal dysplasia (APECED) (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.

Autoimmune polyendocrinopathy-candidiasis-ectodermal dysplasia syndrome (1 gene). Autosomal recessive: AIRE.
Inheritest® 500 PLUS with Repro Partners Report

<table>
<thead>
<tr>
<th>Account Number:</th>
<th>LCA-BN</th>
<th>FEMALE</th>
<th>SAMPLE REPORT, F-630217</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering Physician:</td>
<td>11/11/2001</td>
<td>MALE</td>
<td>SAMPLE REPORT, M-630217</td>
</tr>
<tr>
<td>Date Reported:</td>
<td>08/21/2019</td>
<td></td>
<td>08/21/2019 13:47 (Local)</td>
</tr>
</tbody>
</table>

Cartilage-hair hypoplasia (1 gene). Autosomal recessive: RMRP.
Cerebellar hypoplasia, VLDLR-associated (1 gene). Autosomal recessive: VLDLR.
Chronic granulomatous disease (5 genes). Autosomal recessive: CYBA, NCF1, NCF2, NCF4. X-Linked: CYBB. Males are not tested for X-linked disorders.
Coats plus syndrome and dyskeratosis congenita, CTC1-related (1 gene). Autosomal recessive: CTC1.
Cohen syndrome (1 gene). Autosomal recessive: VPS13B.
Cold-induced sweating syndrome, includes Crisponi syndrome (2 genes). Autosomal recessive: CLCF1, CRLF1.
Congenital adrenal hyperplasia (6 genes). Autosomal recessive: CYP11B1, CYP17A1, CYP21A2, HSD3B2, POR, STAR Fusion CYP11B1 genes will not be reported;
Congenital amegakaryocytic thrombocytopenia (1 gene). Autosomal recessive: MPL.
Congenital generalized lipodystrophy (2 genes). Autosomal recessive: AGPAT2, CAVIN1
Congenital insensitivity to pain with anhidrosis (1 gene). Autosomal recessive: NTRK1.
Congenital myasthenic syndrome (5 genes). Autosomal recessive: CHAT, COLQ, DOK7, GFPT1, RAPSN
Cutis laxa (5 genes). Autosomal recessive: ATP6V0A2, ATP6V1E1, EFEMP2, LTBP4, PYCR1
Cystic fibrosis (1 gene). Autosomal recessive: CFTR.
Cystinosis (1 gene). Autosomal recessive: CTNS.
Deafness and hearing loss, nonsyndromic (7 genes). Autosomal recessive: GJB2, GJB6, LOXHD1, OTOF, STRC, SYNE4 Only recessively inherited variants will be reported for GJB2 and GJB6. X-Linked: POU3F4. Males are not tested for X-linked disorders.
Dent disease (2 genes). X-Linked: CLCN5, OCRL. Males are not tested for X-linked disorders.
Dihydropyrimidinase dehydrogenase deficiency (1 gene). Autosomal recessive: DLD.
Dihydropyrimidine dehydrogenase deficiency (1 gene). Autosomal recessive: DPYD.
Distal spinal muscular atrophy, autosomal recessive (1 gene). Autosomal recessive: PLEKHG5.
Dystrophinopathies, including Duchenne and Becker muscular dystrophy and X-linked cardiomyopathy (1 gene). X-Linked: DMD. Males are not tested for X-linked disorders.
Early infantile epileptic encephalopathy (2 genes). Autosomal recessive: CAD, ITPA.
Emery-Dreifuss muscular dystrophy (2 genes). X-Linked: EMD, FHL1. Males are not tested for X-linked disorders.
Fabry disease (1 gene). X-Linked: GLA. Males are not tested for X-linked disorders.
Familial dysautonomia (1 gene). Autosomal recessive: ELPL.
Familial hemophagocytic lymphohistiocytosis (4 genes). Autosomal recessive: PRFI, STX11, STXB2, UNC13D.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Inheritest® 500 PLUS with Repro Partners Report

©1995-2019 Laboratory Corporation of America® Holdings All Rights Reserved

Inheritest® 500 PLUS with Repro Partners Report

<table>
<thead>
<tr>
<th>Account Number:</th>
<th>LCA-BN</th>
<th>FEMALE</th>
<th>SAMPLE REPORT, F-630217</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordering Physician:</td>
<td>11/11/2001</td>
<td>MALE</td>
<td>SAMPLE REPORT, M-630217</td>
</tr>
<tr>
<td>Date Reported:</td>
<td>08/21/2019</td>
<td></td>
<td>08/21/2019 13:47 (Local)</td>
</tr>
<tr>
<td>Familial hyperinsulinism</td>
<td>Autosomal recessive: ABC2A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Familial Mediterranean fever</td>
<td>Autosomal recessive: MEF2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fanconi anemia</td>
<td>10 genes</td>
<td>Autosomal recessive: BRIP1, FANC, FANCC, FANCd2, FANCE, FANCf, FANCg, FANCi, FANCqX-Linked: FANCb. Males are not tested for X-linked disorders.</td>
<td></td>
</tr>
<tr>
<td>Fragile X syndrome</td>
<td>Autosomal recessive: FMR1. Males are not tested for X-linked disorders.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraser syndrome</td>
<td>3 genes</td>
<td>Autosomal recessive: FRAS1, FREM2, GRIP1.</td>
<td></td>
</tr>
<tr>
<td>Fucosidosis</td>
<td>(1 gene)</td>
<td>Autosomal recessive: FUCA1.</td>
<td></td>
</tr>
<tr>
<td>Galactosemia</td>
<td>3 genes</td>
<td>Autosomal recessive: GALE, GALK1, GALT.</td>
<td></td>
</tr>
<tr>
<td>Galactosialidosis</td>
<td>(1 gene)</td>
<td>Autosomal recessive: CTSA.</td>
<td></td>
</tr>
<tr>
<td>Gaucher disease</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GBA.</td>
<td></td>
</tr>
<tr>
<td>Glutaric acidemia type I</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GCDH.</td>
<td></td>
</tr>
<tr>
<td>Glutaric acidemia type II</td>
<td>(3 genes)</td>
<td>Autosomal recessive: ETFA, ETFB, ETFDH.</td>
<td></td>
</tr>
<tr>
<td>Glutathione synthetase deficiency</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GSS.</td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease type I</td>
<td>(2 genes)</td>
<td>Autosomal recessive: G6PC, SLC37A4.</td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease type III</td>
<td>(1 gene)</td>
<td>Autosomal recessive: AGL.</td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease type IV</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GBE1.</td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease type V</td>
<td>(1 gene)</td>
<td>Autosomal recessive: PYGM.</td>
<td></td>
</tr>
<tr>
<td>Glycogen storage disease type VII</td>
<td>(1 gene)</td>
<td>Autosomal recessive: PFKM.</td>
<td></td>
</tr>
<tr>
<td>GM1 gangliosidosis and mucopolysaccharidosis type IVB</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GLB1.</td>
<td></td>
</tr>
<tr>
<td>GRACILE syndrome</td>
<td>(1 gene)</td>
<td>Autosomal recessive: BCS1L.</td>
<td></td>
</tr>
<tr>
<td>Gyrate atrophy of choroid and retina</td>
<td>(1 gene)</td>
<td>Autosomal recessive: OAT.</td>
<td></td>
</tr>
<tr>
<td>Hepatic venoocclusive disease with immunodeficiency</td>
<td>(1 gene)</td>
<td>Autosomal recessive: SP110.</td>
<td></td>
</tr>
<tr>
<td>Hereditary fructose intolerance</td>
<td>(1 gene)</td>
<td>Autosomal recessive: ALDOB.</td>
<td></td>
</tr>
<tr>
<td>Hermansky-Pudlak syndrome</td>
<td>(10 genes)</td>
<td>Autosomal recessive: AP3B1, AP3D1, BLOC1S3, BLOC1S6, DTNB1, HPS1, HPS3, HPS4, HPS5, HPS6.</td>
<td></td>
</tr>
<tr>
<td>HMG-CoA lyase deficiency</td>
<td>(1 gene)</td>
<td>Autosomal recessive: HMGCCL.</td>
<td></td>
</tr>
<tr>
<td>Holocarboxylase synthetase deficiency</td>
<td>(1 gene)</td>
<td>Autosomal recessive: HLCS.</td>
<td></td>
</tr>
<tr>
<td>Homocystinuria</td>
<td>(1 gene)</td>
<td>Autosomal recessive: CBS.</td>
<td></td>
</tr>
<tr>
<td>HSD10 disease</td>
<td>(1 gene)</td>
<td>X-Linked: HSD17B10. Males are not tested for X-linked disorders.</td>
<td></td>
</tr>
<tr>
<td>Hyaline fibromatosis syndrome</td>
<td>(1 gene)</td>
<td>Autosomal recessive: ANTXR2.</td>
<td></td>
</tr>
<tr>
<td>Hydrothelial syndrome</td>
<td>(1 gene)</td>
<td>Autosomal recessive: HYLS1.</td>
<td></td>
</tr>
<tr>
<td>Hypomyelination and congenital cataract</td>
<td>(1 gene)</td>
<td>Autosomal recessive: FAM126A.</td>
<td></td>
</tr>
<tr>
<td>Hypophosphatasia</td>
<td>(1 gene)</td>
<td>Autosomal recessive: ALPL.</td>
<td></td>
</tr>
<tr>
<td>Immunodysregulation, polyendocrinopathy, and enteropathy</td>
<td>(1 gene)</td>
<td>X-Linked: FOXP3. Males are not tested for X-linked disorders.</td>
<td></td>
</tr>
<tr>
<td>Inclusion body myopathy 2</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GNE.</td>
<td></td>
</tr>
<tr>
<td>Isovaleric acidemia</td>
<td>(1 gene)</td>
<td>Autosomal recessive: IVD.</td>
<td></td>
</tr>
<tr>
<td>Joubert syndrome and related disorders, including Meckel-Gruber syndrome</td>
<td>(19 genes)</td>
<td>Autosomal recessive: AH11, ARL13B, B9D1, B9D2, CEP104, CPLANE1, INPP5E, KIF14, NPHP1, NPHP3, RPRGRIPL1, TCTN1, TCTN2, TCTN3, TMEM138, TMEM216, TMEM231, TMEM237, TMEM67.</td>
<td></td>
</tr>
<tr>
<td>Juvenile hereditary hemochromatosis</td>
<td>(2 genes)</td>
<td>Autosomal recessive: HAMP, HJV.</td>
<td></td>
</tr>
<tr>
<td>Krabbe disease</td>
<td>(1 gene)</td>
<td>Autosomal recessive: GALC.</td>
<td></td>
</tr>
<tr>
<td>L1 syndrome</td>
<td>(1 gene)</td>
<td>X-Linked: L1CAM. Males are not tested for X-linked disorders.</td>
<td></td>
</tr>
</tbody>
</table>
Inheritest® 500 PLUS with Repro Partners Report

Leber congenital amaurosis (9 genes). Autosomal recessive: APL1, LCAS, LRAT, RD3, RDH12, RPE65, RPRIP1, SPATA7, TULP1.

Limb-girdle muscular dystrophy, autosomal recessive (12 genes). Autosomal recessive: CAPN3, DYSF, FKRP, POMGNT1, POMT1, POMT2, SGCA, SGCB, SGCD, SGCG, TRAPPCT11, TRIM32.

Lipoprotein lipase deficiency, familial (1 gene). Autosomal recessive: LPL.

Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (1 gene). Autosomal recessive: HADHA.

Lysosomal acid lipase deficiency (1 gene). Autosomal recessive: LIPA.

Maple syrup urine disease (3 genes). Autosomal recessive: BCKDHA, BCKDHB, DBT.

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (1 gene). Autosomal recessive: ACADM.

Metachromatic leukodystrophy (2 genes). Autosomal recessive: ARSA, PSAP.

Methylmalonic acidemia (4 genes). Autosomal recessive: MCEE, MMAA, MMAB, MMAT.

Methylmalonic acidemia with homocystinuria (5 genes). Autosomal recessive: ABCD4, LMBRD1, MMACHC, MMADHC. X-Linked: HCFC1. Males are not tested for X-linked disorders.

Mitochondrial complex V deficiency (1 gene). Autosomal recessive: TMEM70.

Mucolipidosis type II and III (1 gene). Autosomal recessive: GNLPTAB.

Mucopolysaccharidosis type I (1 gene). Autosomal recessive: IDUA.

Mucopolysaccharidosis type II (1 gene). X-Linked: IDS. Males are not tested for X-linked disorders.

Mucopolysaccharidosis type III (4 genes). Autosomal recessive: GNIS, HGNSAT, NAGLU, SGSH.

Mucopolysaccharidosis type IVA (1 gene). Autosomal recessive: GALNS.

Mucopolysaccharidosis type VI (1 gene). Autosomal recessive: ARSB.

Mucopolysaccharidosis type VII (1 gene). Autosomal recessive: GUSB.

Multiple pterygium syndrome (1 gene). Autosomal recessive: CHRN.

Multiple sulphatase deficiency (1 gene). Autosomal recessive: SUMF1.

Nemaline myopathy (1 gene). Autosomal recessive: NEB.

Nephrotic syndrome (2 genes). Autosomal recessive: NPHS1, NPHS2.

Neurodegeneration with brain iron accumulation disorder (7 genes). Autosomal recessive: ATP1A2, C19orf12, COASY, CP, DCAF17, FA2H, PLA2G6.

Neuronal ceroid-lipofuscinosis (10 genes). Autosomal recessive: CLN3, CLN5, CLN6, CLN8, CTSD, CTSF, KCTD7, MFSD8, PPT1, TPP1.

Niemann-Pick disease type C (2 genes). Autosomal recessive: NPC1, NPC2.

Nijmegen breakage syndrome (1 gene). Autosomal recessive: NBN.

Ommen syndrome (3 genes). Autosomal recessive: DCLRE1C, RAG1, RAG2.

Ornithine transcarbamylase deficiency (1 gene). X-Linked: OTC. Males are not tested for X-linked disorders.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Testing Performed at Medical Neurogenetics, LLC, 5424 Glenridge Drive. Atlanta, GA 30342. Peter L. Nagy MD PhD, Laboratory Director 1-800-255-7357
Osteogenesis imperfecta, autosomal recessive (9 genes). Autosomal recessive: BMP1, CRTAP, FKBP10, P3H1, PLOD2, PPIB, SERPINF1, TMEM38B, WNT1

Osteopetrosis, autosomal recessive (3 genes). Autosomal recessive: OST1M1, TCIIRG1, TNFSF11.

Phenylalanine hydroxylase deficiency, includes phenylketonuria (PKU) (1 gene). Autosomal recessive: PAH.

Phosphoglycerate dehydrogenase deficiency (1 gene). Autosomal recessive: PHGDH.

Pompe disease (1 gene). Autosomal recessive: GAA.

Pontocerebellar hypoplasia (11 genes). Autosomal recessive: AMPD2, CHMP1A, CLP1, EXOSC3, RARS2, SEPSECS, TSEN2, TSEN34, TSEN54, VPSS3, VRK1.

Primary carnitine deficiency (1 gene). Autosomal recessive: SLC22A5.

Primary congenital glaucoma (1 gene). Autosomal recessive: CYP1B1.

Primary hyperoxaluria (3 genes). Autosomal recessive: AGXT, GRHPR, HGAA1.

Propionic acidemia (2 genes). Autosomal recessive: PCCA, PCCB.

Pseudocholinesterase deficiency (1 gene). Autosomal recessive: BChE.

Pycnodysostosis (1 gene). Autosomal recessive: CTSK.

Pyridoxal 5'-phosphate-dependent epilepsy (1 gene). Autosomal recessive: PNPO.

Sandhoff disease (1 gene). Autosomal recessive: HEXB.

SELENO-N-related disorders (1 gene). Autosomal recessive: SELENON.

Severe combined immunodeficiency (SCID) (25 genes). Autosomal recessive: AK2, CD247, CD3D, CD3E, CD3G, CD8A, CORO1A, DOCK8, FOXL1, IL2RA, IL7R, IL2R, IL7R, JAK3, LCK, LIG4, MALT1, MTHFD1, NHEJ1, PGM3, PN, PRKDC, PTPRC, STK4, TCTA, ZAP70.

Severe combined Immunodeficiency (SCID), X-linked (1 gene). X-Linked: IL2RG. Males are not tested for X-linked disorders.

Sulfate transporter-related osteochondrodysplasias, includes achondrogenesis type 1B, atelosteogenesis type 2, diastrophic dysplasia, and recessive multiple epiphyseal dysplasia (1 gene). Autosomal recessive: SLC26A2.

Sulfite oxidase deficiency (1 gene). Autosomal recessive: SUOX.

Tay-Sachs disease (1 gene). Autosomal recessive: HEXA.

Tetrahydrobiopterin deficiency (3 genes). Autosomal recessive: PCBD1, PTS, QDPR.

Triple A syndrome (1 gene). Autosomal recessive: AAAS.

Electronically released under the direction of Peter L. Nagy, MD PhD by: Trey Langley, PhD

Testing Performed at Medical Neurogenetics, LLC, 5424 Glenridge Drive. Atlanta, GA 30342. Peter L. Nagy MD PhD, Laboratory Director 1-800-255-7357
Tyrosine hydroxylase deficiency (1 gene). Autosomal recessive: TH.

Tyrosinemia type I (1 gene). Autosomal recessive: FAH.

Tyrosinemia type II (1 gene). Autosomal recessive: TAT.

Tyrosinemia type III (1 gene). Autosomal recessive: HPD.

Usher syndrome (hearing loss and retinitis pigmentosa) (9 genes). Autosomal recessive: ADGRV1, CDH23, CIB2, CLRN1, PCDH15, USH1C, USH1G, USH2A, WHRN.

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (1 gene). Autosomal recessive: ACADVL.

Walker-Warburg syndrome and other FKTN related dystrophies (1 gene). Autosomal recessive: FKTN.

Werner syndrome (1 gene). Autosomal recessive: WRN.

Wilson disease (1 gene). Autosomal recessive: ATP7B.

X-linked syndromic mental retardation (1 gene). X-Linked: NONO. Males are not tested for X-linked disorders.

Xeroderma pigmentosum (8 genes). Autosomal recessive: DDB2, ERCC2, ERCC3, ERCC4, ERCC5, POLH, XPA, XPC.

Zellweger spectrum disorder/ peroxisome biogenesis disorder (13 genes). Autosomal recessive: PEX1, PEX10, PEX11B, PEX12, PEX13, PEX14, PEX16, PEX19, PEX2, PEX26, PEX3, PEX5, PEX6.

This test was developed and its performance characteristics determined by Medical Neurogenetics, LLC. It has not been cleared or approved by the Food and Drug Administration.

Medical Neurogenetics, LLC is a wholly-owned subsidiary of Laboratory Corporation of America Holdings.